Center for Public Health Preparedness

Graduate School of Public Health University of Pittsburgh

HHS Secretary's Council on Public Health Preparedness January 23, 2004

Samuel J. Watson University of Pittsburgh

Preparing Health Professionals

- Preparing health professionals and organizations to respond to bioterrorism, infectious disease and other public health threats and emergencies
- One of 19 centers ASPH, CDC and HHS

CPHP Functions

- Assessment of education and training needs
 - Ex. Public Health Ready (NACCHO) Allentown City Health Bureau
- Advising and supporting state and local decision-makers
 - Pennsylvania Department of Health
 - Allegheny County Health Department
 - Neighborhood Emergency Help Centers
 - Metropolitan Medical Response System (MMRS) Pennsylvania Region 13
 - Collaborations: Pa-Ohio Public Health Training Center at Pitt; Center for Rural Health Practice at Pitt-Bradford; Penn State University Office of Rural Health Policy; School of Public Health at Drexel University; School of Public Health at Ohio State University
- Delivering appropriate education and training programs
 - Pennsylvania Preparedness Leadership Institute
 - Pennsylvania on-line Learning Management System
 - Certificate program in "Public Health Preparedness and Disaster Response" in Graduate School of Public Health
 - Distance education to reach State Health Department and rural areas

Contact

Margaret A. Potter, JD

Director, Center for Public Health Preparedness

Associate Dean for Public Health Practice

University of Pittsburgh

3109 Forbes Avenue, Suite 200

Pittsburgh, PA 15260

412-383-2400

mapotter@pitt.edu

Hospital Capacity: Bioterrorism Response "The Pittsburgh Matrix"

HHS Secretary's Council on Public Health Preparedness January 23, 2004

Michael Allswede DO
Samuel Watson MA
University of Pittsburgh
A research study funded by the
Agency for Healthcare Research and Quality
in collaboration with RTI

UPMC Key Capabilities

Command and Control Capability

- Terrorism Response Information Center (TRIC)
- Rapid Bed Capacity Assessment Tool
- Staff contact lists and broadcast technology
- Active ED case surveillance
- Corporate Command Center
- Bridge Teleconferencing
- Community Outreach

BT Specific Capabilities

- HVAC Modifications-Quarantine System
- Personal Protective Equipment
- Infection Control Attire
- Staff training to OSHA standards
- Large volume decontamination
- "Safety Link" Briefings
- Real-Time Outbreak System (RODS)
- Antibiotic Stockpile
- Vaccination Clinic Preparations

UPMC Expenses

\$2.8 million to create the capability!

\$1 million per year to maintain and drill!

Optimal BT Planning

- Define the BT threat topography
- Assess potential victim load
- Define medical facility capacity
- Identify gaps and critical resources
- Assess the "value" of critical resources

Pittsburgh Matrix Hypotheses

- The primary drivers of survivorship in Bioterrorism response are:
 - Victim loadrelative toavailable capacity
 - Timeline of Detection

 Timeline and Capacity-Victim Load combinations can be used to value resources and assess critical gaps within a system

Calculation of Scale

<u>Current</u> <u>Capacity</u>	Surge Capacity	Augmented Capacity	Above all Resources
Capacity - Census	Current + Additional Space-Staff	Surge + Outside Resources	Above Augmented
10	100	1,000	10,000

Hospital Capacity: The Pittsburgh Matrix

Above all					
Resources					
Augmented					
Capacity					
Surge					
Capacity					
Current					
Capacity					
gnanaununununus E	Pre Release	Release	Symptom	Illness	Deaths/Epide
			Occurrence	Occurrence	mic

Allswede, MP, Watson SJ., AHRQ Pittsburgh Matrix, 2002

Pathogen Rating

Effectiveness of Medical Treatment 0: Comfort Measures Only Needed 1: Highly Effective-Survival Probable 2: Improved Survival-Survival Improved Example: Salmonella Example: Skin Anthrax Example: Yersinia Pestis	Communicability/Quarantine Needs		
2: Close Contact/Universal Precautions 3: Airborne/HEPA Filtration Example: Ebola Virus Example: Variola Virus Example: Variola Virus Example: Variola Virus Example: Salmonella Example: Salmonella Example: Skin Anthrax Example: Skin Anthrax Example: Skin Anthrax Example: Skin Anthrax	0: Non-communicable/No Quarantine	Example Bot Toxin	
3: Airborne/HEPA Filtration Example: Variola Virus Effectiveness of Medical Treatment 0: Comfort Measures Only Needed Example: Salmonella 1: Highly Effective-Survival Probable Example: Skin Anthrax 2: Improved Survival-Survival Improved Example: Yersinia Pestis	1: Blood and Body Fluid/Universal Precautions	Example: HIV Virus	
Effectiveness of Medical Treatment 0: Comfort Measures Only Needed 1: Highly Effective-Survival Probable 2: Improved Survival-Survival Improved Example: Salmonella Example: Skin Anthrax Example: Yersinia Pestis	2: Close Contact/Universal Precautions	al Precautions Example: Ebola Virus	
0: Comfort Measures Only Needed Example: Salmonella 1: Highly Effective-Survival Probable Example: Skin Anthrax 2: Improved Survival-Survival Improved Example: Yersinia Pestis	3: Airborne/HEPA Filtration	Example: Variola Virus	
1: Highly Effective-Survival Probable Example: Skin Anthrax 2: Improved Survival-Survival Improved Example: Yersinia Pestis	Effectiveness of Medical Treatment		
2: Improved Survival-Survival Improved Example: Yersinia Pestis	•	*	
	1: Highly Effective-Survival Probable	*	
3. Ineffective-Survival Not Improved Example: Variola Virus	2: Improved Survival-Survival Improved	Example: Yersinia Pestis	
	3. Ineffective-Survival Not Improved	Example: Variola Virus	
	•	E 1 CL 1: :1D:	
Availability of Medical Treatment		1 1	
0: Non-Pharmaceutical Treatment Example: Clear Liquid Die	<u>.</u>	1	
0: Non-Pharmaceutical Treatment Example: Clear Liquid Die 1: Multiple Available Pharmaceuticals Example: Ames Strain	•••	Example: Bot Antitoxin	
0: Non-Pharmaceutical Treatment Example: Clear Liquid Die	3: Obscure or Experimental Pharmaceuticals	Example: Variola Vaccine	

Allswede, MP, Watson SJ., *AHRQ Partnership for Quality, 2002*

Variola

Above all Resources 10,000		6 (15%)	9 (30%)	9 (30%)	9 (30%)
Augmented Capacity 1,000	2 (1.5%)	5 (10%)	9 (30%)	9 (30%)	9 (30%)
Surge Capacity 100	2 (1.5%)	5 (10%)	9 (27%)	9 (27%)	9 (27%)
Current Capacity 10	2 (1.5%)	5 (10%)	9 (25%)	9 (25%)	9 (25%)
	Pre Release	Release	Symptom Occurrence	Illness Occurrence	Deaths/Epidemic

Allswede, MP, Watson SJ., *AHRQ Pittsburgh Matrix*, 2002

Decision-Support Tool

- STEP I: Identify probably pathogen
- STEP II: Calculate Victim Load-Capacity
- STEP III: Locate Matrix "Box"
- STEP IV: Act on Critical Resources and Decisions

Limitations

- Each pathogen must be analyzed individually for most accurate result
- Each hospital must receive good scenario information
 - This is most difficult in early stages
- Each hospital must know its calculate capacity and critical resources
- Cost estimates based upon UPMC costs...may be change with civic participation
- Assumes UPMC Health System "Gold Standard"

Contact

Michael P. Allswede
 Department of Emergency Medicine
 University of Pittsburgh
 412-298-1696
 allswedemp@upmc.edu

Samuel J. Watson
 Department of Environmental and Occupational Health
 University of Pittsburgh
 412-383-2400
 watsons@pitt.edu